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Load Balancing Unstructured Adaptive Grids for C,FD

Problems

Rupak Biswas* Leonid Oliker*

Abstract

Mesh adapt(on is a powerful tool for efficient unstructured-grid computations but

causes load imbalance among processors on a parallel machine. A dynamic load

balancing method is presented that balances the workload across all processors with a

global view. After each parallel tetrahedral mesh adapt(on, the method first determines
if the new mesh is sufficiently unbalanced to warrant a repartitionmg. If so, the

adapted mesh is repartitioned, with new partitions assigned to processors so that the
redistribution cost is minimized. The new partitions are accepted only if the remapping

cost is compensated by the improved load balance. Results indicate that this strategy is

effective for large-scale scientific computations on distributed-memory multiprocessors.

1 Introduction

Dynamic mesh adapt(on on unstructured grids is a powerful tool for computing unsteady

three-dimensional problems that require grid modifications to efficiently resolve solution

features. By locally refining and coarsening the mesh to capture flowfield phenomena of

interest, such procedures make standard computational methods more cost effective. Highly

refined meshes are required to accurately capture shock waves, contact discontinuities,

vortices, and shear layers. Local mesh adapt(on provides the opportunity to obtain solutions

that are comparable to those obtained on globally-refined grids but at a much lower cost.

l rn fortunately, the adaptive solution of unsteady problems causes load imbalance among

processors on a parallel machine. This is because the computational intensity is both space

and time dependent. An efficient parallel implementation of such methods has not yet been

achieved, primarily because of the difficulties associated with the dynamically-changing

nonunifornl grid. Various methods on dynamic load balancing have been reporte(l to (late;

however, most of them lack a glol)al view of loads across processors.

Figure l depicts our framework for parallel adaptive flow computation, it consists

of a [low solver and mesil adat)tor, with a partitioner and mapper that re(listributes the

computational mesh when necessary. Our goal is to build a portable system for efTici(mtly

performing a(lat)tive large-scale tlow calculations in a parallel message-passing environment.

The mesh is first partitioned and mat)ped among the availabh, processors. A flow solver

lhen runs for several iterations, updating solution variables. Once an accel)table solution is

obtained, a mesh adapt(on procedure is invoked to generate a new cotnl)utational mesh

I)ase(l on an (,rror indicator, iX quick evaluati(m st('l) deternfines if the new mesh is
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sufficiently unbalanced to warrant a repartitioning. If the current partitions are adequately

load balanced, control is passed back to the flow solver. Otherwise, a repartitioning

procedure is invoked to divide tile new mesh into subgrids. The new partitions are then

reassigned to the processors in a way that minimizes the ('<)st of data movement. If the

remapping cost is less than the computational gain that would be achieved with balanced

partitions, all necessary data is appropriately redistributed. Otherwise, the new partitioning

is discarded and tile flow calculation continues on the old partitions.
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Overview of our framework for parallel adaptive flow computatwn.

Notice from the framework in Fig. I that the computational load is balanced and the

runtime communication reduced only for the flow solver but not for the mesh adaptor.

This is acceptable since flow solvers are usually several times more expensive. However,

the mesh adaption procedure can also be load balanced, if so desired. In any case, it

is obvious that mesh a(taption, repartitioning, processor assignment, and remapping are

critical components of the fl'amework and must be accomplished rapidly and efficiently so

as not to cause a significant overhead to the flow computation.

2 Euler Flow Solver

The unstructured-grid (It.'1) solver [7] used for the numerical calculations in this paper

is a finite-volume upwin(l code that solves for the unknowns at the vertices of the mesh

and satisfies the integral conservation laws on nonoverlapping polyhedral control volumes

surroundiug these vertices. Improved accuracy is achieved by using a piecewise linear

reconstruction of the solution in each control volume. The Enler equations are written in

an inertial frame so that th(, rotor blade an(t grid move through stationary air at the specified

rotational an(l translational speeds. Fluxes across each control volume are computed using

the relative velocities between the moving grid and the stationary far field. For a rotor in

hover, the grid encompasses an appropriate fraction of the rotor azimuth. Periodicity is

enforced I)y fi)rming control volumes that include informalion fi'om opl_osit(" sides of the

grid domain. The solution is a(Ivanced in time using conventional explicit pro('edures.

The code uses an edge-based data structure that makes it particularly compatit)le

with our mesh a(lal)tiou procedure. Furthermore, sin('(, lh_, Number of edges in a mesh

is significantly smaller than the xmmber of faces, (:ell-retie× edge sch(,rnes are inherently

more efficient than cell-centered element methods. I"illally, an edge-based data structure

(lees not limit th(' ilsor I() a particular type of volume ele,wHt. I",veiI though tetrahedral

elenients are used ill this lial)er, ally arbitrary c(Jlubiiia.l.ioil of polyhedr;i can be used [3].

This is also tl'il(, for oilr 141olial load lial_tii('ilig pl'ocedilro.



3 Parallel Mesh Adaption

The serial mesh adaption scheme is described in [2]. The 5000-line C code has its data

structures based ell edges of a tetrahedral mesh. This means that the elements are defined

by their edges rather than by their vertices. This feature makes the mesh adaption

procedure capable of performing anisotropic refinement and coarsening that results in a

more efficient distribution of grid points. Details of the distributed-menmry implementation

are given in [5]. The parallel version consists of an additional 3000 lines of C++ and MPI

code as a wrapper around the original mesh adaption program. An object-oriented approach

allowed this to be performed in a clean and efficient manner.

At each mesh adaption step, tetrahedral elements are targeted for coarsening, reline-

ment, or no change by computing an error indicator for each edge. Edges whose error values

are larger (smaller) than a specified upper (lower) threshold are targeted for subdivision

(removal). Only three subdivision types are allowed for each element. The 1-to-8 isotropic

subdivision is implemented by adding a new vertex at the mid-point of each of the six

edges. The l-to-4 and 14o-2 subdivisions result either because a tetrahedron is targeted
anisotropically or because they are required to form a valid connectivity for the new mesh.

When an edge is bisected, the solution vector is linearly interpolated at the mid-point from

the two points that constitute the original edge.

4 Dynamic Load Balancing

We present a new method to dynamically balance the processor workloads with a global

view. Results reported in [6] used a simulated mesh adaption scheme to focus on

flmdamental load balancing issues. Results reported in [1] did use the actual parallel mesh

adaption procedure [5], but lacked solution-based adaption, an efficient mesh repartitioner,

and an actual remapper. This paper addresses all of these issues.

Our load-balancing procedure has three novel features. First, it uses a dual graph

representation of the initial computational mesh to keep the complexity and connectivity

constant (luring the course of an adaptive computation. Second, a heuristic remapping

algorithm assigns partitions to processors so that the redistribution cost is minimized. Fi-

nally, accurate metrics estimate and compare the computational gain and the redistribution

cost of having a balanced workload after each mesh adaption step.

4.1 Dual Graph of Initial Mesh

The dual gral)h representation of the initial mesh is one of the key features of this work.

The tetrahe(tral elements of the computational mesh are tim vertices of the dual graph. An

e<lge exists I)etween two <lual graph vertices if the corresponding elements share a face. A

graph partitioninp_; of the dual thus yields an assignment of tetrahedra to processors.

I';ach dual graph vertex has two weights associated with it. The computatioual weighl,

w,,,,n,p, indicates the workloa(l for the correspou<ling element. The remapping weight,

,_.,,,,,_,p, indicates the cost of moving the element from one processor to another. The

weigh! "¥,,,,u, is set to tim number of leaf elements in the refinement tree because <rely those

elements participate in the flow computaliotl. The weight w,.,,n_p, however, is sel to th(,
total tluml)er of elements in the refinemenl tree beca.tls(, all descen(tants of the root (,letnent

must move with it from on<, l)a.rtition l,o another if so required. New grids obtained by

a(lal)tion ar_' tra nslaled 1o the, l wo weighls fl)r (,very element in the initial mesh. As a

resull, the repartitiotfin_4 tinge d('l)('n(Is only on the initial probl(,nt size and the tlumt)('r of

i)arliliozls, but not (m l.he size of the a(lal)le(I mesh.



4.2 Preliminary Evaluation

The preliminary evaluation step rapidly determines if the dual graph with a new set of ?Ocomp

should be repartitioned. If projecting the new values on the current partitions indicates

that they are adequately load balanced, there is no need to repartition the mesh. In that

case, tile flow computation continues uninterrupted on the current partitions. If the loads

are unbalanced instead, the mesh is repartitioned.

A proper metric is required to measure the load imbalance. If Wm_x is the sum of

tile w,:omp on the most heavily-loaded processor, and Ways is the average load across all

processors, the mesh is repartitioned if the imbalance factor Wmax/W+,vg is unacceptable.

4.3 Mesh Repartitioning

If the preliminary evaluation step determines that the dual graph with a new weight

distribution is unbalanced, the mesh needs to be repartitioned. Note that repartitioning is

always performed on the dual graph with tile weights adjusted. A good partitioner should

minimize the total execution time by balancing the computational loads and reducing the

interprocessor communication time. ht addition, the partitioning phase must be performed

very rapidly for our load balancing framework to be viable.

Several excellent partitioning algorithms are available [9]; however, we need one that is

extremely fast. Multilevel algorithms present a way to reduce the partitioning cost, while

maintaining the quality of the partitions. These algorithms reduce the size of the graph

by collapsing vertices and edges, applying an eigensolver on the smaller graph, and then

uncoarsening it back to construct a partitioning for the original graph. We have used the

MeTiS [4] multilevel scheme as the repartitioner for the test cases in this paper.

4.4 Similarity Matrix Construction

New partitions must be mapped to the processors such that the redistribution cost is mini-

mized. We assume that the redistribution cost is proportional to the volume of data moved.

In general, the number of new partitions is an integer multiple F of the number of processors.

Each processor is then assigned F partitions. The rationale behind allowing multiple

partitions per processor is that performing data mapping at a finer granularity reduces

the volume of data movement at the expense of partitioning and processor reassignment

times, llowever, setting 1: to unity suffices for most practical applications.

The tirst step toward processor reassignment is to compute a similarity measure S that

indicates how the remapping weights w,-_,,,ap of the new partitions are distributed over the

processors. It is l'el)resente(t as a matrix where entry "Yij iS the sum of tilt, Wrema p of all

the dual graph vertices it, new partition j that already reside on processor i. A similarity

tnatrix for l' = ,1 an(I I" = 2 is shown in l:ig. 2. Only the non-zero entri(,s are shown.

4.5 Processor Reassignment

In general, each processor ('annot I)e assigned F unique partitions ('ol'resl_onding to their

t" largest weights. This is tile case for the 5 showtl itL the left half <)f I+'ig. 2 where the l"

largest weights for each l)rocessor are sha<le(I. To minimize, the total data movement for

all i)rocessors, each l)rocessor i tnusl t>e assigned k" Ill,i<lll(' partitions ji_/, f -- l, 2 ..... i",

so thal the ot)jective f,lnction Z_'---_ Z_-I ,5'i.),_/ is tuaxituized sul,je<'t Io the constraint

Ji_,. +_ fl++_._,f()r all i _ k an(I r, .+ -- l+ 2 ..... /+'.

This ol)titHization I)r<)l)lenl re(lu<'es to 1he m+txim+dly-weighte(I I_il>artit(' graph t)arti-

tioning I)rol)lenl Ill. We have iuq)lel_lellled I)oth ()l)tiln+_l au_l heurislic s(>luli<Jn algorilhms.
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Thepsuedo-codefor our suboptimalgreedyalgorithnl is givenill [1]. Applyingthe heuris-
tic procedureto the similarity matrix in the left half of Fig. 2generatesthe newprocessor
assignmentshownin the right half of Fig.2. Note that this is not the optimal solution.

New Partitions New Partitions

New Processors

FIG. 2. A sirmlar, ty matrlz S before (left) and after (right) processor reassignment.

4.6 Cost Calculation

The computational gain due to repartitioning is proportional to the decrease in the load

imbalance achieved by running the adapted mesh on the new partitions rather than on
old new

the old partitions. It can be expressed as TiterNadapt(W_a x - Wriax), where Titer is the

time required to run one solver iteration on one element of the original mesh, Nadapt is the
new of thenumber of solver iterations between mesh adaptions, and w°ld.- max and Wmn',,x are the sum

Wcomp on the most heavily-loaded processor for the old and new partitionings, respectively.

The redistribution cost is calculated from similarity matrix using the remote-memory

latency time Tlat and the message setup time 7setup- It can be expressed as CMTIat -4-

NT_¢tup, where M is the storage requirements per element for the solver and mesh adaptor,
and C and N are the total number of elements and sets of elements to be moved,

respectively. For the S in Fig. 2, C = 1485 and N = 6. The new partitioning and processor

assignment are accepted if the computational gain is larger than the redistribution cost.

4.7 Data Remapping

The remapping phase is responsible for physically moving the data when it is reassigned

to a different processor. When an element is moved from one processor to another, a

communication cost as well as an overhead are incurred. Tim communication cost includes

the time required to i)ack and unpack the send and receive huffers, and the message setup

and remote-nmnlory latency times. The overhead is the time necessary to rebtfil(l the

internal and shar(,d data structures in a consistent manner. Note that the relationship

between the t,umt)('r of elements moved and the total (tata vohlme is not exactly linear.

This is due to the movetnent of the shared data structures whose size is a functioIl of th(,

Iocatioils of th(, old and new l)artition boun(laries. The shared information accounts for a

small per('(,ntag(" of th(, (lata volunw, and is the caus(, of slight perturbatiotls.

5 Results

The l)arall_'l mesh a(lat)tion and glohal load balancing t)roce(lures have been iml)l('tn('tkl('(I

ith M I'I on an IBM S!)2. TIw ('Oml)utatiotlal mesh, contaitfing 6(),.()6_ tetrah('(Iral eh, tnents

and 7_,3,13 e(lg(,s, is ih(' on(, us(,(I to sitnulate all acoustics (,Xl)erimeni wh(,ro a mo(l('l Ir 11-Ill

h(,li('opl('r t'oi()r I)la(t(' was t(,st(,(I ov('r a rang(' of suhsotli( + all<l transotli(" hov(,r-lip Math

tiilliili('l'S. Niiliil,,ri('al rl,siilts +liid a (h,lail<,(I rol)<it't. ()f lh,_' siniill_.tl.iotl ai+t ' _iVeli in [S].



Results are presented for one refinement and one coarsening step using five different

edge-marking strategies representing significantly different scenarios. Strategies Local_l

and Local__2 targeted 5% and 33_(> of the edges for refinement in a single compact region

of the mesh. 'File final meshes consisted of about 82,300 and 201,800 elements respectively.

Strategies Roal_l and Real_2 targeted edges for adaption based on an error indicator [8]

calculated from the flow solution such that the mesh sizes were approximately equal to those

obtained in the corresponding Local cases. The subsequent coarsening phase for Local_l

and Real_l undid all of the refinement to restore the initial mesh. For Local_2. and Real_2,

the refined mesh was coarsened down to about 100,200 elements. The fifth strategy, called

Random_2, consisted of randomly targeting edges for adaption such that the mesh sizes after

both refinement and coarsening were apl)roximately equal to those obtained with Local_2.

Figure 3 illustrates the parallel speedup of the refinement and coarsening phases of the

mesh adaption code for the five edge-marking strategies. As expected, Random_2 gives the

best speedup performance as the processor workloads are inherently balanced. The speedup

results are the worst for the Local._1 case because a single compact region of the mesh is

adapted. All the work is thus performed by only a small subset of the available processors.

The Local._2 and Roa'l_2 speedup values are higher than the corresponding Local_l and

Rea'l_l values because the adaption region is much larger. The coarsening results are similar

to those for the refinement step because of the algorithmic similarities of the two methods.

However, performance improves significantly for the Local_l and Roal_l cases because

undoing all of the previous refinement better balances the processor workloads. Extensive

performance analysis of the parallel mesh adaption code is given in [5].
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Figure ,1 conil)ares the execution times aH(I th(, amount of data movement for the

Local_2 reIinemenl slrategy when using the optintal and heuristic processor assignment

algorithms, l"our pairs of curves are shown in each plol for l" = 1,2,4, an(I S. The el)ritual

metho(l always requires a hnost two orders of Illagnitu(le more time than our heuristic

method. The ('xe('utiotl limes also itwrease sigtlili('alflly as F is itlcrease(I. This is I>e('atise

the size of tim silnilarity matrix grows with /,'. However, the volume of data mov(,menl

(lecreases with iu('r'('asine4 t". This confirms our (,arlier claim that data movement ('all

t)e re(lu('e(I I)y mal)lfing at a liner graHularity. The relative re(luctiotl in dal, a movement,

however, i_ uot very si_;ififi('ant for our test cases. The results in Fig. 4 illustrate that our

heuristic nial)lier i._ allnosl as good as the optiuial al_orithiu whih, r(,(lUil'ing significantly

le,_s lime. _iiliilar I'o_ult,_ were obtained for lho olher _'dp_e-liiarkiug sti'ate_ie_.

I"i_Ul'O F)shows how the execulion liili(, i,_ st)eilt dllriil_ lhe reliileilieul and tlio ._ill)._oquoiil



102-

"_ IO1-

1o0.
._ 1(_1.

'_ 163.
1()4

160 8 1'6

._1---- ............ °''"°'°

V ,°" °A.°°. oo*°" ................ oo-"

i4 3'2 4o _ st6 64

Number of processors

I0

8

_6

4"

2-

0 S

] -n- Heuristic (F-4)
] _ Heuristic (F-8)

i .... Optimal

1'6 2'4 3'2 ,g_ 48 5'6 64

Number of processors

FIG. 4. Comparison of the optimal and heuristic mappers in terms of execution time (left)

and volume of data movement (right) for the Local_2 refinement strategy.

load-balancing phases of the Real_l and Real_2 strategies with F = 1. Tile processor

reassignment times are not shown since they are negligible compared to the other times

and are similar to those shown in Fig. 4. The repartitioning curves are almost identical

because the repartitioning time mostly depends on the initial problem size and tile number

of partitions. The serial version of MeTiS [4] is used in this work; significant performance

improvement is therefore expected with a parallel repartitioner. The remapping times

gradually decrease as the number of processors is increased. This is because even though
the total volume of data movement increases with the number of processors, there are

actually more processors to share the work. Notice that data remapping is still the most

dominant cost and about three times more expensive than mesh adaption. The results

indicate that our load balancing strategy will remain viable on large numbers of processors;

however, significant future effort nee(Is to be focused on data remapping.
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Finally, we investigate the impact of load I)alancing on tlow solver execution times.

Suppose that there are 1' l)ro('t'ssors and NIt' ehmwnt.s per pro('(,ssor in a Ioa(I-balatl('e(I

configuration. The ('Oml)utati()nal mesh is lhen relined to gelloralo a total of (IN eh,me.ts,

1 < (/ < 8 for our refin('ttleilt l)roce(lur('. If th(, workload were balance(I, each l)roc('ssor

wouhl have (/Nil' eloni(,lits. Illil ili the worsl ('+is(,, all t h(, (,l(,liilqits (in a subset of

pr()('(,,,-;sors ;ll'e isotroliically i'efili('d 1 lo-_4, whih' elOlllellts (ill lhe I'Olllailiillg pl'O('(,SSOl'S

rolii;-iili lill('halig('d. Tlius. lh(, liiaXiliiillii illllirOVOlilOlil (ill(, 1.() load liiiiali('ill_ for ;t ._il,.ll,



t rain (8, P(G 1)+1).refinement step would be

Figure 6 illustrates the impact of load balancing for the five different refinement cases.

The mesh growth factor G is 1.35 for the Local_l and Real_l cases, giving a maximum

improvement of 5.9;} with load balancing when P _> 20. The value of G is 3.31 for the other

three cases, so the maximum improvement is 2.42 when P _> 4. Note that the curves for

the Local cases come closest to the Hax_Imb (maximum imbalance) curves because a single

compact region of the mesh was refined to cause severe imbalance among the processors.

The impact of load balancing for tim Real cases are somewhat less significant since they

model actual solution-based adaptions that does not necessarily cause worst case scenarios.

The Random_2 case gives only a marginal improvement with load balancing because the

computational work is already distributed quite uniformly among the processors. It is

important to realize that the results shown in Fig. 6 are for a single refinement step. With

repeated refinement, the gains realized with load balancing may be even more significant.
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FIG. 6. Impact of load balancing on flow solver execution t,mes for mesh growth facto)" G of

1.35 (left) and 3.31 (right).
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